Rencontres mathématiques de Glanon - accueil

Rencontres mathématiques de Glanon
11e édition - du 2 au 6 juillet 2007

[ Accueil | Présentation | Inscription | Se rendre à Glanon | Comptes rendus | Contactez nous ]
Accueil

Programme des conférences

 
Lundi
Mardi
Mercredi
Jeudi
Vendredi
9:00 - 10:30
B. Benoit I
B. Keller II
I.Zharkov I
B. Benoit III
B. Keller III
11:00 - 12:30
J. Draisma I
J. Draisma II
E. Brugallé I
I. Zharkov II
J. Draisma III
12:30 - 14:00  
 
 
 
 
 
14:00 - 15:00
Libre
Questions to B. Keller

Questions  to I. Zharkov

I. Zharkov III
15:15 - 16:45
Libre
Libre

Conf. libre
E. Brugallé III
17:30 - 18:30
B. Keller I
B. Benoit II

E. Brugallé II
Conf. libre
Après-dinner.
Questions to B. Benoit
Questions to J. Draisma

Questions to E. Brugallé

 

Introduction to tropical geometry and correspondence theorems Bertrand Benoit Genève

abstract: Tropical geometry has important applications to both complex and real enumerative geometry. Mikhalkin correspondence theorems provide a way to translate some classical enumerative problems to tropical ones. I will state basic definitions and properties of tropical variety focusing on the case of curves. I will then explain how to tropicalize (complex and real) enumerative problems of the following type: What is the number of plane curves of degree d and genus g passing through 3d-1+g points? Finally, I plan to give a nice application of this correspondence to a real enumerative problem with tangency conditions.

Enumerative Tropical Geometry

Erwan Brugallé
Jussieu (Paris 6)

abstract: According to Mikhalkin's Correspondance Theorem (cf Benoit Bertrand's lectures), classical enumerative problems (i.e. the art of counting curves) can be solved tropically. Moreover, the tropical appoach allows one to count real curves as well, what is in generally not possible with previous technics. The goal of these lectures is to explain why tropical enumerative geometry is easier than the classical one. First I will define some enumerative invariants in complex (Gromov Witten invariants) and real (Welschinger invariants) geometry, and I will explain how to get formulas to compute them via tropical geometry. These lectures are based on previous works by I. Itenberg, A. Gathmann, V. Kharlamov, H. Markwig, G. Mikhalkin, E. Shustin and myself.

Tropical geometry: foundations, an application, and phenomena Jan Draisma Eindhoven

abstract: I will first treat some basic theorems in tropical geometry, e.g., give various characterisations of the tropicalisation of a variety, and some insight into the Bieri-Groves theorem. Then I will zoom in on a nice application by myself and Karin Baur to secant varieties. Finally, I plan to treat a few interesting tropical constructions, e.g., Speyer-Sturmfels's tropical Grassmannian of
lines.

Cluster algebras and quiver representations Bernhard Keller Jussieu (Paris 7)

abstract: Cluster algebras were invented in 2000 by S. Fomin and A. Zelevinsky. The original motivations came from Lusztig's work on canonical bases in quantum groups and total positivity in algebraic groups. It has turned out that cluster algebras are related to a surprisingly large number of subjects, notably higher Teichmüller theory and quiver representation theory. In these lectures, we will introduce cluster algebras by a series of examples and explore their links with quiver representations following mainly work by Caldero-Chapoton, Buan-Marsh-Reiten, and, if time permits, Geiss-Leclerc-Schröer.

Tropical curves and their Jacobian.

Ilia Zharkov Harvard

abstract: TBA

 

Remerciements

Les Rencontres sont organisées par l'Association mathématique de Glanon, avec l'aide financière des associations et organismes suivants :


L'institut de mathématiques de l'Université de Bourgogne ,
A.N.R. Geometry and Integrability in Mathematical Physics
l'U.F.R. M.I.M. de l'Université de Metz,
la commune de Glanon

[ Accueil | Présentation | Inscription | Se rendre à Glanon | Comptes rendus | Contactez nous ]

Dernière modification : 03/03/2007